Prediction of Molecular Targets of Cancer Preventing Flavonoid Compounds Using Computational Methods
نویسندگان
چکیده
Plant-based polyphenols (i.e., phytochemicals) have been used as treatments for human ailments for centuries. The mechanisms of action of these plant-derived compounds are now a major area of investigation. Thousands of phytochemicals have been isolated, and a large number of them have shown protective activities or effects in different disease models. Using conventional approaches to select the best single or group of best chemicals for studying the effectiveness in treating or preventing disease is extremely challenging. We have developed and used computational-based methodologies that provide efficient and inexpensive tools to gain further understanding of the anticancer and therapeutic effects exerted by phytochemicals. Computational methods involving virtual screening, shape and pharmacophore analysis and molecular docking have been used to select chemicals that target a particular protein or enzyme and to determine potential protein targets for well-characterized as well as for novel phytochemicals.
منابع مشابه
Molecular targets of pomegranate (Punica granatum) in preventing cancer metastasis
Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...
متن کاملA QSAR Study of HIV Protease Inhibitors Using Computational Descriptors to Prediction of pki of Cycle Derivatives of Urea
Preventing and reducing the spread of HIV (HIV) has always been a concern in medical science. One of the most common ways to control the virus is using enzyme-blocking drugs. In this study, we attempted to predict the biological activity (PKi) of organic urea derivatives in protease inhibitor compounds using molecular modeling using QSAR (Quantitative Structure Activity Relation), which is the ...
متن کاملComputational Design, Molecular Docking Study and Toxicity Prediction of Some Novel Pralidoxime Derivatives as reactivators of acetyl cholinesterase enzyme
Abstract Background & Objective: oximes as Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate compounds (OPCs) intoxication. Oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. Organophosphorus compounds (OPCs) such as soman, sarin, or VX react with acetyl cholinesterase irreversibly. In this research, a group o...
متن کاملIn silico prediction of anticancer peptides by TRAINER tool
Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...
متن کاملComputational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.
Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...
متن کامل